Mean value properties of solutions to parabolic equations with variable coefficients
نویسندگان
چکیده
منابع مشابه
Existence of Solutions for Degenerate Parabolic Equations with Rough Coefficients
We prove that a sequence of quasi-solutions to non-degenerate degenerate parabolic equations with rough coefficients is strongly Lloc-precompact. The result is obtained using the H-measures and a new concept of quasihomogeneity. A consequence of the precompactness is existence of a weak solution to the equation under consideration.
متن کاملReal Analytic Solutions of Parabolic Equations with Time-measurable Coefficients
We use Bernstein’s technique to show that for any fixed t, strong solutions u(t, x) of the uniformly parabolic equation Lu := aij (t)uxixj−ut = 0 in Q are real analytic in Q(t) = {x : (t, x) ∈ Q}. Here, Q ⊂ Rd+1 is a bounded domain and the coefficients aij(t) are measurable. We also use Bernstein’s technique to obtain interior estimates for pure second derivatives of solutions of the fully nonl...
متن کاملParabolic Equations with Measurable Coefficients
We investigate the unique solvability of second order parabolic equations in non-divergence form in W 1,2 p ((0, T ) × R), p ≥ 2. The leading coefficients are only measurable in either one spatial variable or time and one spatial variable. In addition, they are VMO (vanishing mean oscillation) with respect to the remaining variables.
متن کاملUnique Continuation and Complexity of Solutions to Parabolic Partial Differential Equations with Gevrey Coefficients
In this paper, we provide a quantitative estimate of unique continuation (doubling property) for higher-order parabolic partial differential equations with non-analytic Gevrey coefficients. Also, a new upper bound is given on the number of zeros for the solutions with a polynomial dependence on the coefficients.
متن کاملParabolic and Elliptic Equations with Vmo Coefficients
An Lp-theory of divergence and non-divergence form elliptic and parabolic equations is presented. The main coefficients are supposed to belong to the class V MOx, which, in particular, contains all functions independent of x. Weak uniqueness of the martingale problem associated with such equations is obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1987
ISSN: 0022-247X
DOI: 10.1016/0022-247x(87)90249-6