Mean value properties of solutions to parabolic equations with variable coefficients

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Solutions for Degenerate Parabolic Equations with Rough Coefficients

We prove that a sequence of quasi-solutions to non-degenerate degenerate parabolic equations with rough coefficients is strongly Lloc-precompact. The result is obtained using the H-measures and a new concept of quasihomogeneity. A consequence of the precompactness is existence of a weak solution to the equation under consideration.

متن کامل

Real Analytic Solutions of Parabolic Equations with Time-measurable Coefficients

We use Bernstein’s technique to show that for any fixed t, strong solutions u(t, x) of the uniformly parabolic equation Lu := aij (t)uxixj−ut = 0 in Q are real analytic in Q(t) = {x : (t, x) ∈ Q}. Here, Q ⊂ Rd+1 is a bounded domain and the coefficients aij(t) are measurable. We also use Bernstein’s technique to obtain interior estimates for pure second derivatives of solutions of the fully nonl...

متن کامل

Parabolic Equations with Measurable Coefficients

We investigate the unique solvability of second order parabolic equations in non-divergence form in W 1,2 p ((0, T ) × R), p ≥ 2. The leading coefficients are only measurable in either one spatial variable or time and one spatial variable. In addition, they are VMO (vanishing mean oscillation) with respect to the remaining variables.

متن کامل

Unique Continuation and Complexity of Solutions to Parabolic Partial Differential Equations with Gevrey Coefficients

In this paper, we provide a quantitative estimate of unique continuation (doubling property) for higher-order parabolic partial differential equations with non-analytic Gevrey coefficients. Also, a new upper bound is given on the number of zeros for the solutions with a polynomial dependence on the coefficients.

متن کامل

Parabolic and Elliptic Equations with Vmo Coefficients

An Lp-theory of divergence and non-divergence form elliptic and parabolic equations is presented. The main coefficients are supposed to belong to the class V MOx, which, in particular, contains all functions independent of x. Weak uniqueness of the martingale problem associated with such equations is obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1987

ISSN: 0022-247X

DOI: 10.1016/0022-247x(87)90249-6